Soft Computing Techniques in Spatial Databases
نویسنده
چکیده
Spatial database systems and geographical information systems are currently only able to support geographical applications that deal with only crisp spatial objects, that is, objects whose extent, shape, and boundary are precisely determined. Examples are land parcels, school districts, and state territories. However, many new, emerging applications are interested in modeling and processing geographic data that are inherently characterized by spatial vagueness or spatial indeterminacy. Examples are air polluted areas, temperature zones, and lakes. These applications require novel concepts due to the lack of adequate approaches and systems. In this chapter, the authors show how soft computing techniques can provide a solution to this problem. They give an overview of two type systems or algebras that can be integrated into database systems and utilized for the modeling and handling of spatial vagueness. The first type system, called Vague Spatial Algebra (VASA), is based on well known, general, and exact models of crisp spatial data types and introduces vague points, vague lines, and vague regions. This enables an exact definition of the vague spatial data model since we can build it upon an already existing theory of spatial data types. The second type system, called Fuzzy Spatial Algebra (FUSA), leverages fuzzy set theory and fuzzy topology and introduces novel fuzzy spatial data types for fuzzy points, fuzzy lines, and fuzzy regions. This enables an even more fine-grained modeling of spatial objects that do not have sharp boundaries and interiors or whose boundaries and interiors cannot be precisely determined. This chapter provides a formal definition of the structure and semantics of both type systems. Further, the authors introduce spatial set operations for both algebras and obtain vague and fuzzy versions of geometric intersection, union, and difference. Finally, they describe how these data types can be embedded into extensible databases and show some example queries. DOI: 10.4018/978-1-60566-814-7.ch004
منابع مشابه
Utilization of Soft Computing for Evaluating the Performance of Stone Sawing Machines, Iranian Quarries
The escalating construction industry has led to a drastic increase in the dimension stone demand in the construction, mining and industry sectors. Assessment and investigation of mining projects and stone processing plants such as sawing machines is necessary to manage and respond to the sawing performance; hence, the soft computing techniques were considered as a challenging task due to stocha...
متن کاملInvestigating electrochemical drilling (ECD) using statistical and soft computing techniques
In the present study, five modeling approaches of RA, MLP, MNN, GFF, and CANFIS were applied so as to estimate the radial overcut values in electrochemical drilling process. For these models, four input variables, namely electrolyte concentration, voltage, initial machining gap, and tool feed rate, were selected. The developed models were evaluated in terms of their prediction capability with m...
متن کاملA COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...
متن کاملA Fuzzy Rule-based Expert System for the Prognosis of the Risk of Development of the Breast Cancer
Soft Computing techniques play an important role for decision in applications with imprecise and uncertain knowledge. The application of soft computing disciplines is rapidly emerging for the diagnosis and prognosis in medical applications. Between various soft computing techniques, fuzzy expert system takes advantage of fuzzy set theory to provide computing with uncertain words. In a fuzzy exp...
متن کاملApplication of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters
The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...
متن کاملApplication of statistical techniques and artificial neural network to estimate force from sEMG signals
This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...
متن کامل